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ABSTRACT

The nuclear power industig datarich and tlesedata introduce a
tremendous potential for automation and cost savidg the other hand,
research organizations, among other stakeholders, have very capable methods
and solutions often developed using sinedieor synthetic data due to the lack of
real dataOne cause of this disconnect is data priv@ata privacy is of
paramount importance &l industies, but especiallythe nuclearindustrydue to
the risks associated with the malicious use of (l&tp loss of competitive edge,
reverseengineering of proprietary systems, national security concerns
However, or the data to be ableby research organizationss ibference
characteristiceeed tdbe maintaired This challengemotivated thalata
obfuscation method callecedeptive infusion of data (DIODPIOD is a novel
datamasking paradigrthatspecifically addresses the above concerns with
existing datamasking technigues. Fundamentally, DIOD ensures that the
information content of the maskedd the proprietary dateidentical through
the informatiortheoretic guarantee of mutual information, while also
disassociating the identity of the masked data from the proprietary system. This
oneway (i.e., masking of datajperation is irreversibland allows the analyst to
arrive at identical conclusions using the masked data without permitting
successful reversengineering.

In this effort, DIOD is applied and demonstrated usimguse casefor
regressionOne use case targeted a physiased mdelgenerated from a
simple, noisdreepointkinetics (PK) model with one delayed neutron grahe
second targeted a process that resembles an actual nuclear power plant process.
The first use case was applied to three scenarios in which power wla® use
predict thePK parameters. Thogmrametersverefiwell-posed) fill -posed) and
fireduced ikposedd All three scenarios were concealeddbgctrical load data
The resultsalidated that the DIOD procedure preserves mutual information
between the oginal and masked data. The second use caseauselteanblue
team exercise where the blue teamated process data from a simulatigtin
anomaliesncluded. The blue team masked the data with another procesetata
usingDIOD and shared it witthered team. The red team attempted to identify
anomalies in the masked daaad to reversengineer the masked data to
decipher the identity of the proprietary systdihe anomalies were discoverable
but the identity of the system was not reveaiedicaing a successful
demonstration of DIOD use
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A NOVEL DATA OBFUSCATION METHOD TO SHARE
NUCLEAR DATA FOR MACHINE LEARNING
APPLICATION

1. INTRODUCTION

The nuclear powedndustry has been operating for decades and storing a huge amount of useful data
for automation of various activities at nuclear power pl@dRPs) On the other hand, research
organizations, among other stakeholders, have very capable methods andssoftgio developed using
simulated or synthetic data due to the lack of real data. This gap motivated the development of a data
warehouse to serve as a data hub for NPPs, vendors, research organizations (e.g., universities), standards
committees and profe®nal societies, compliance organizations, and various other stakeholders
(Figurel). The data warehouse will host a library of proven methods f®sN® usand easily access
(Figure2). This would enable NPPs to validate the developed methods on thvesdetusé servers,
then download theneh o dalgdrithmsand coddor local use. The data warehouse would also enable
data sharing, including allowing the data to be transferrediser once the NPP has issued specific
authorization or the data have been sanitized (i.e., obfuscated).

Anotherbenefit of the data warehousethatit enable dataintegration.Givenartificial intelligence
and machine learning (Al/ML) has proven very useful to the nuclear power indieimyintegration is
considered a key enabler for Al/MThe potential to irggrate and leverage data across the entire industry
via a data warehouse would afford multiple beneditAl/ML developmentincluding increased
statistical powerhigherfrequencies of low basgte behaviors, as well ashanced verification.

Thespecificdata privacychallenge associated with data shaforgntegrationin nuclear energy
required research into methods of data obfuscation. Data privacy is of paramount imporaince in
industies, but especiallythe nuclearindustrydue to the risks associated with the malicious use of data
(e.g., loss of competitive edge, reveeswjineemg of proprietary systems, national security congerns
Theconcernof data privacy has been investigated for decades, starting witmdatdng techniques
such as substitution, shuffling, encryption, dior. data warehouses, and more recently, diffisén
privacy and fully homomorphic encryptidfi 3].

The methods suited for data warehouses are generally not applicable to industanbtjaisand/or
do not preserve the physical correlations necessary for Al/ML tools to be effective. For example, omitting
all but the last foudigits of social security numbgis not applicable to timeeries data from the sensor
of an industrial control systerfiraditional encryption with decryption keys is intended to protect the data
in transit to an analyst; however, it does not protectiita fromthe analyss themselves, instead relying
onadministrativered tape, notgisclosure agreements, eto. prevent the analyst from reverse
engineering the data and publicizing the findinggmomorphic encryption, while promising and
allowing forthe mathematical manipulation of data directly in the encrypted form, is in its infanéy and
limited in application, typically reduced to multiplication and addition operations in a constrained
analytical environmen®]. Furthermore, the massive overheads in encryption render it unscalable to the
size of process data commonly encountered in indusast, differential privacy relies on the privacy
utility tradedf by injecting artificial noise (typically Laplacian) into the data collected to provide
plausible deniability to the source while preserving group statigicklpwever, the effect of the injected
noise on industrial data is typically detrimental to Al/ML algorithms as it degrades the quality of the data
and injecting vast amounts of noise to obscure trends and patterns renders the data unusable.
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Figurel. A data warehouse enables experience and methods to be transferred among NPPs and outside
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Figure2. Dataobfuscation is a potential solution for enabling ddtaring among plants and research
organizations

In this effort, a new data obfuscation method is created. Deceptive infusion of data (DIOD) is a novel
datamasking paradigm which specifically addresdesabove concerns with existing datasking
technigues. Fundamentally, DIOD ensures that the information content of the masked and the proprietary
dataareidentical through the informatietheoretic guarantee of mutual information, while also
disassoating the identity of the masked data from the proprietary systenual information is
employed to validate the claim of identical inference hEnés oneway (i.e., masking of data)peration



is irreversible and allows the analyst to arrive at idehtioaclusions using the masked data without

permitting successful reversmgineeringAlso, DIOD addresses the computational burden ortdelta
industrial systems by introducing a highly scalable implementation after an inititihemeeduceebrder
mockling cost that is typically performed by domain experts for most industrial systems.

The remainder of the report is organized as folld®ection2 presents the D method. SectioA
consists ofwo use case® demonstrate DIOD for regressiddne use case targeted a phydiased
model, the second targeted a process #smbles an actulPPprocess.The preservation of inference
properties using DIOD are demonstratedhoth use case$he second use casatlines a red teasblue
team exercise where the blue team is composed of experimentalists generating proprietary data with
anomalies from a proprietary system and performing the DIOD procedure, while the red team is
composed of analysts that are tasked with identifying ahesna the masked data and attempting to
reverseengineer the masked data to decipher the identity of the proprietary system.



2. METHOD

DIOD decomposes the target data into two sets of metadata: fundamental metadatadata
relating to the proprietg system identityand inference metadata, the metadata relevant for Al/ML
applications. The fundamental metadatatypically composed of the underlying differential equations,
system geometry, material properties,,d@t@t are fixed across a set aperimentswhereas the
inference metadat@ecomposed of the operational regimes, varying parameters of insardsgmporal
and/or sensor correlatiottsatdepend on the target Al/ML application. This decomposition is given by:

® Gh [ W%o | p

Here,0 afi is the proprietarpystemdata approximated as the suni afyads, wherg @ is the
proprietarysystemfundamental metadata corresponding to a paramieted%o. | is theproprietary
systeminference metadata corresponding to some process parameter

The goal of the DIOD methodology is to replace the fundamental metadata of the proprietary system
with that ofthe fundamental metadataariother generic system, eg to disassociate ¢hidentity of
the data from the proprietary system, while preserving the inference metadata. This is dnhieved
decomposing the generic systamextract the generic system fundamental metadatasz
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[ ©is the conjugate of and is used to eliminate the dependencén® (i.e., remove the
fundamental metadatapiven that the masked dafa only possess the fundamental metadata of the
generic system and the transformed inference metadata mfojiéetary system, it is impossible to guess
the identity of the source since infinite possibilities eXst. instance, if a proprietary firstder system
of equationsguch as point-kinetics[PK] model) is transformed into a generic system of eqost
(springmassdamper model), any reveremgineering efforts would only inform the adversary of the
springmassdamper model, providing no clues to the fiostler or the stiff nature of the simph
model.Furthermore, the invariance of mutual infation to invertible transformations and extraneous
metadata implies that transformations on the inference metadata and discarding of irrelevant inference
metadata is possible to further finene the masking procedure to the target AlI/ML application.
sunmary,Eq. 1i 4 show thaeny reverseengineering effortso identify the systerare expected to lead to
the generic systeffundamental metadatélowever, any inference efforts will have identical performance
on both the proprietary and the masked dateediney carry the samformation content.

Additionally, Eq. I 4 arehighly scalable requiring an initial oriene cost to develop a library of
concealment operators corresponding to the fundamental metadata of various proprietary and generic
systems. Multiple datsetscarrying the same information content may then begdad through
repeated applications &f. 4, fusing the inference metadata (or transformations of it) with the



fundamental metadata of multiple generic systems. This effectively creates a benchmsekndetee

the masked data consist of the same m#tdion but appear to have come from various systems. In theory,
an ideal AI/ML algorithm is expected to perform identically on all the sets of data due to the identical
information content. A detailed discussion of the method can be foudf in [



3. USE CASES

This section presents two use cases to demonstrate the use ofdi€ypession problems, which are
commonly used for timseries type of datdn the first use cas®K equations are used aplaysics
basedexperiment in which the data need to be obfuscated. In the second use case, process data from a
simulated process that represent reallear poweplant dataareused. In the first use casbe
obfuscation is performed using concealment operators that are from a totally different system. In the
second use case, another process (i.e., similar type of data) is used to obfuscate the origindhprocess.
both caseghe aim is teestablish a retioonship between the observations of a system or process and its
input parametergssuminghe data owneis reluctant to share the observations directly for fears of
misuse. To circumvent this issue, the owner of the data provides the masked vetséotadd tusing the
DIOD procedure, and the true relationship can be identified by reversing the operations known only to the
owner.

The process use case utilizes a red tbara team setup wherein the blue team generates the sensitive
and generic datanjects anomalies into the proprietary system, and performs the DIOD procedure. The
masked data are then handed to the red team, which is tasked with detecting the various anomalies while
simultaneously attempting to reversegineer the masked data (iregover thadentity of the proprietary
system and potentially the sensitive data themselitds)assumed that the red team is aware of the
DIOD procedure and its mathematical framework for the target Al/ML application without
knowing the specific tragformations used.

3.1 Physics Use Case
3.1.1 Description of Physics Use Case

For this experimenthe proprietansystemdataaregenerated from simplified, noisefree PK model
with one delayed neutron gro{i 6] as shown below ikq. 5i 6.
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Here ” is theinitial reactivityinserted intdhe systend, is thetotal fraction of delayed neutrons,s the
mean lifetime of prompt neutronsjs the onegroup average halife of neutron precursorsnd each
sample of) is aggregated to form the prégtary systemdata For this experiment, each parameter is
sampled from a uniformly random distribution with mean vagiesvn inTablel, and an uncertainty of
10% for each parameter. A samplawer profile is generated belowigure3.

Tablel. Parameteralues forgenerated PKlata

Parameter Z a (seconds) ¥ (seconds)
Mean Value TBI T TV L 1OV pzZp T 08t Y
Uncertainty MMV TBITMTIm@U p Tl T8 T




1.045 T T T T T T T

T

1.04

1.035 7

1.03 7

1.025 | 4

1.02 - 7

Power Ratio

1.015 4

1.01 1 7

1.005 .

1 1 Il 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (Seconds) x1073

Figure3. Samplepower ratioin time.

For this numerical experiment, a simple PK model of a nuclear reactor is simulated with thé jnitial
_1,andy as inputs and and precurserelatedconcentration as outputia Eq. 56. The irverse
problem is set up to solve for the PK paramesreutpugiven thed data asnputusing a neural
network. The timeseries of) in time is used to provide sufficient degrees of freedom to generate the four
PK parametersAlthough there are fourkPparameters, it is noted that thedataareuniquely determined

by three combinations, namely— h-hand_. This implies that the inverse problem isptised as all four
parameters cannot be uniquely determiftech thed distributionwithout additional constraints.

For the purposes of this report, the numerical experiment is subdividetire¢ocases(1l) a case
where only two of the four PK parameters are varieddering the inverse problem welbsed, 2) a
case where all folPK parameters are varied limiting the degree of inferandeendering the inverse
problemill -posed and (3) a reduced form of thejlbsed case whetbree combinationsef parameters
are varied. For all cases, 50,000 samples are generated and rapdditibned into 90% training
samples, 5% validation samples, and 5% testing saniflegesultare evaluatetly comparing théit
PK parameters against therue values.

The experiment begins by evaluating the former case, formulated asosedl poblem with
perfect recoverability wherthe variable$ and_ are fixed while” andy are varieduniformly as
described inrablel. From this tral, it is observedhat both” andy are recovered perfectlgs shown in
Figure4.



The experiment ithenextended to the Hposed case, representative of most realistic systems, where
all four parameters are allowed to vary. However, the inverse problem only allcaverability of at
most threecombinations of the parameters, resulting in the neural network applying additional
assumptions/constraints such as minimization of error to arrive at one of infinite solbiyme5
displays a large bound of uncertainty from this effect that will only be reduced by changing the
experimen{i.e., generating PK parameters with less than 10% uncertainfyapkrl). This is an
example of bias introduced by the inference procedure specifically and artificially exagperat
degree of relationship between the inpud antput variable§i.e., it artificially inflates the mutual
information between the input and the neural network output

If three variables are used instead, namely, and_, they are perfectly recoverable framwithout

any bias from the inference procedure as showrigare6. This denotes the limit of inference foeth
given inverse problem, after which the individual four PK parameters can only be determined with

additional constraints imposed by the inference procedure (minimizingsaeaned error, L1 norm,
regularizationetc.).
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Figure4. Original vs.predictedparametergivenoriginal data in the welposed case
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Figure5. Original vs.predictedparameters giveariginal data in thell-posed case


































































